organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[4,5-Bis(ethylsulfanyl)-1,3-dithiol-2-ylidene]-5-(4-methoxyphenyl)-5H-1,3dithiolo[4,5-c]pyrrole

Feng-Shou Leng,^a Bao Li,^b Bing-Zhu Yin^a* and Li-Xin Wu^b

^aKey Laboratory of Organism Functional Factors of Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and ^bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China Correspondence e-mail: zqcong@ybu.edu.cn

Received 22 October 2009; accepted 10 November 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.117; data-to-parameter ratio = 19.5.

The asymmetric unit of the title compound, $C_{19}H_{19}NOS_6$, contains two independent molecules with different conformations of the ethyl groups. The dihedral angles between the pyrrole and benzene rings are 14.19 (14) and 16.29 $(17)^{\circ}$ in the two molecules. In the absence of short intermolecular contacts, in the crystal, the molecules are packed with their long axes parallel to $[10\overline{1}]$.

Related literature

For general background to the use of pyrrolo-tetrathiafulvalene derivatives as building blocks in supramolecular and materials chemistry, see Becher et al. (2004). For details of the synthesis, see Yin et al. (2004).

Experimental

Crystal data C19H19NOS6

 $M_r = 469.71$

Triclinic, $P\overline{1}$	V = 2123.8 (7) Å ³
a = 11.974 (2) Å	Z = 4
b = 12.121 (2) Å	Mo $K\alpha$ radiation
c = 16.762 (3) Å	$\mu = 0.65 \text{ mm}^{-1}$
$\alpha = 73.90 \ (3)^{\circ}$	$T = 291 { m K}$
$\beta = 85.53 \ (3)^{\circ}$	$0.14 \times 0.13 \times 0.12 \text{ mm}$
$\gamma = 65.43 \ (3)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID	21057 measured reflections
diffractometer	9633 independent reflections
Absorption correction: multi-scan	6504 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.033$
$T_{\min} = 0.914, \ T_{\max} = 0.926$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	493 parameters
$wR(F^2) = 0.117$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
9633 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Programm of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2638).

References

- Becher, J., Nielsen, K. & Jeppesen, J. O. (2004). J. Phys. IV Fr. 114, 445-448. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yin, B. Z., Yang, Y. H., Cong, Z. Q. & Imafuku, K. (2004). Heterocycles, 63, 1577-1584.

Acta Cryst. (2009). E65, o3092 [doi:10.1107/S1600536809047424]

2-[4,5-Bis(ethylsulfanyl)-1,3-dithiol-2-ylidene]-5-(4-methoxyphenyl)-5H-1,3-dithiolo[4,5-c]pyrrole

F.-S. Leng, B. Li, B.-Z. Yin and L.-X. Wu

Comment

Pyrrolo-tetrathiafulvalene derivatives, an important class of electron-donors, are versatile building blocks in supramolecular and materials chemistry (Becher *et al.*, 2004). Recently, we have reported the synthesis and eletron donor properties of the title compound, *N*-(4-methoxyphenyl)pyrrolo[3,4-*d*] tetrathiafulvalene (Yin *et al.*, 2004). In this paper, we report its crystal structure.

The asymmetric unit of the title compound contains two independent molecules (Fig. 1), M1 and M2, respectively. The tetrathiafulvalene and benzene ring are nearly coplanar in both M1 and M2 molecules. Conformations of ethyl groups in M1 and M2 are different: two ethyls in M1 lie in the different side of the plane, while at the same side in M2. In the absence of short intermolecular contacts, the crystal packing is featured by packing of enlongated molecules parallel to direction [10-1].

Experimental

The title compound was prepared through cross-coupling reaction of 4,5-bis(ethylthio)-1,3-dithiole-2-thione with *N*-(4-methoxyphenyl)-(1,3)-dithiolo[4,5-*c*]pyrrole-2-one (Yin *et al.*, 2004). Single crystals for X-ray diffraction were pepared by slow evaporation a mixture of dichloromethane and petroleum at room temperature.

Refinement

C-bound H-atoms were placed in calculated positions (C—H 0.93-0.97 Å), and were included in the refinement in the riding model, with $U_{iso}(H) = 1.5$ or 1.2 $U_{eq}(C)$.

Figures

Fig. 1. Two independent molecules of the title compound, with the atom numbering and 30% probalility displacement ellipsoids.

2-[4,5-Bis(ethylsulfanyl)-1,3-dithiol-2-ylidene]-5-(4-methoxyphenyl)- 5H-1,3-dithiolo[4,5-c]pyrrole

Crystal data

C ₁₉ H ₁₉ NOS ₆	Z = 4
$M_r = 469.71$	$F_{000} = 976$
Triclinic, PT	$D_{\rm x} = 1.469 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

a = 11.974 (2) Å
b = 12.121 (2) Å
c = 16.762 (3) Å
$\alpha = 73.90 \ (3)^{\circ}$
$\beta = 85.53 \ (3)^{\circ}$
$\gamma = 65.43 \ (3)^{\circ}$
V = 2123.8 (7) Å ³

Data collection

Rigaku R-AXIS RAPID diffractometer	9633 independent reflections
Radiation source: fine-focus sealed tube	6504 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 291 K	$\theta_{\rm max} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -15 \rightarrow 13$
$T_{\min} = 0.914, T_{\max} = 0.926$	$k = -15 \rightarrow 15$
21057 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.117$	$w = 1/[\sigma^2(F_o^2) + (0.0602P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
9633 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
493 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Cell parameters from 14243 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 291 KBlock, yellow $0.14 \times 0.13 \times 0.12 \text{ mm}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.0187 (3)	0.4802 (3)	0.7889 (2)	0.0854 (10)
H1A	0.0726	0.5120	0.8044	0.128*
H1B	-0.0388	0.4759	0.8316	0.128*
H1C	-0.0252	0.5354	0.7376	0.128*
C2	0.1669 (2)	0.3475 (2)	0.71499 (16)	0.0515 (6)
C3	0.2258 (2)	0.2272 (2)	0.70449 (18)	0.0602 (7)
H3	0.2079	0.1622	0.7386	0.072*
C4	0.3105 (2)	0.2030 (2)	0.64426 (17)	0.0571 (7)
H4	0.3494	0.1219	0.6378	0.069*
C5	0.3380 (2)	0.2985 (2)	0.59338 (15)	0.0442 (5)
C6	0.2771 (2)	0.4189 (2)	0.60244 (16)	0.0548 (6)
Н6	0.2939	0.4841	0.5676	0.066*
C7	0.1915 (2)	0.4437 (2)	0.66262 (17)	0.0563 (7)
H7	0.1505	0.5254	0.6678	0.068*
C8	0.5125 (2)	0.1538 (2)	0.52980 (15)	0.0486 (6)
H8	0.5188	0.0776	0.5659	0.058*
С9	0.5849 (2)	0.1689 (2)	0.46494 (14)	0.0442 (5)
C10	0.5441 (2)	0.2991 (2)	0.42581 (14)	0.0446 (5)
C11	0.4482 (2)	0.3611 (2)	0.46830 (15)	0.0476 (6)
H11	0.4041	0.4480	0.4564	0.057*
C12	0.7299 (2)	0.1887 (2)	0.34512 (14)	0.0430 (5)
C13	0.8184 (2)	0.1662 (2)	0.29066 (15)	0.0444 (5)
C14	0.9907 (2)	0.0657 (2)	0.19511 (15)	0.0469 (6)
C15	1.0237 (3)	-0.1466 (2)	0.1501 (2)	0.0684 (8)
H15A	1.0782	-0.2149	0.1275	0.082*
H15B	1.0068	-0.1837	0.2063	0.082*
C16	0.9051 (3)	-0.0780 (3)	0.09887 (18)	0.0773 (9)
H16A	0.8485	-0.0134	0.1226	0.116*
H16B	0.8705	-0.1364	0.0981	0.116*
H16C	0.9205	-0.0405	0.0431	0.116*
C17	0.9521 (2)	0.1906 (2)	0.16305 (15)	0.0485 (6)
C18	1.1509 (3)	0.2438 (3)	0.0997 (2)	0.0904 (12)
H18A	1.1488	0.2678	0.1506	0.109*
H18B	1.2049	0.1551	0.1099	0.109*
C19	1.1992 (3)	0.3184 (4)	0.0333 (3)	0.1182 (16)
H19A	1.2185	0.2824	-0.0130	0.177*
H19B	1.2721	0.3178	0.0538	0.177*
H19C	1.1384	0.4035	0.0158	0.177*
C20	-0.5385 (3)	0.8748 (3)	0.7996 (2)	0.0770 (9)
H20A	-0.5821	0.8834	0.7511	0.116*
H20B	-0.5959	0.9151	0.8368	0.116*
H20C	-0.4941	0.7871	0.8270	0.116*
C21	-0.3663 (2)	0.8889 (2)	0.72209 (15)	0.0460 (5)
C22	-0.3512 (2)	0.7916 (2)	0.68927 (16)	0.0537 (6)
H22	-0.4039	0.7510	0.7029	0.064*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C23	-0.2572 (2)	0.7543 (2)	0.63580 (17)	0.0535 (6)
H23	-0.2467	0.6880	0.6142	0.064*
C24	-0.17888 (19)	0.8141 (2)	0.61409 (13)	0.0402 (5)
C25	-0.1954 (2)	0.9128 (2)	0.64690 (15)	0.0469 (5)
H25	-0.1438	0.9546	0.6325	0.056*
C26	-0.2882 (2)	0.9490 (2)	0.70089 (16)	0.0517 (6)
H26	-0.2983	1.0146	0.7232	0.062*
C27	-0.0765 (2)	0.7044 (2)	0.50572 (14)	0.0450 (5)
H27	-0.1322	0.6706	0.5018	0.054*
C28	0.0251 (2)	0.6924 (2)	0.46045 (14)	0.0424 (5)
C29	0.0835 (2)	0.7582 (2)	0.48538 (14)	0.0414 (5)
C30	0.0163 (2)	0.8089 (2)	0.54558 (15)	0.0448 (5)
H30	0.0336	0.8573	0.5731	0.054*
C31	0.21143 (19)	0.6709 (2)	0.36860 (14)	0.0403 (5)
C32	0.2935 (2)	0.6418 (2)	0.31059 (14)	0.0408 (5)
C33	0.4041 (2)	0.5729 (2)	0.18181 (14)	0.0435 (5)
C34	0.3035 (2)	0.5950 (3)	0.03313 (16)	0.0587 (7)
H34A	0.3066	0.5558	-0.0107	0.070*
H34B	0.2317	0.5971	0.0648	0.070*
C35	0.2904 (3)	0.7273 (3)	-0.00531(19)	0.0732 (9)
H35A	0.2825	0.7683	0.0376	0.110*
H35B	0.2185	0.7724	-0.0419	0.110*
H35C	0.3616	0.7259	-0.0362	0.110*
C36	0.4630(2)	0.6343 (2)	0.20262 (15)	0.0450 (5)
C37	0.5531 (3)	0.8156 (3)	0.1410 (2)	0.0684 (8)
H37A	0.5403	0.8307	0.1955	0.082*
H37B	0.6228	0.8334	0.1184	0.082*
C38	0.4416 (3)	0.9048 (3)	0.0860 (2)	0.0906 (11)
H38A	0.4501	0.8856	0.0334	0.136*
H38B	0.4331	0.9896	0.0776	0.136*
H38C	0.3701	0.8964	0.1118	0.136*
N1	0.42782 (17)	0.27241 (16)	0.53236 (12)	0.0454 (5)
N2	-0.08223(16)	0.77573 (17)	0.55855 (11)	0.0421 (4)
01	0.08803 (17)	0.35935 (18)	0.77861 (12)	0.0664(5)
02	-0.45483 (16)	0.93211 (17)	0.77612 (12)	0.0638 (5)
S1	0.71479 (6)	0.06700 (5)	0.42617 (4)	0.05735 (19)
S2	0.62565 (6)	0.34433 (6)	0.34207 (4)	0.05800 (19)
S3	0.92856 (6)	0.01481 (5)	0.29013 (4)	0.05201 (17)
S4	0.84103 (7)	0.28873 (6)	0.21607 (4)	0.05770 (18)
S5	1.10304 (6)	-0.04916(7)	0.15474 (5)	0.0687 (2)
S 6	0.99851 (6)	0.26916 (7)	0.07115 (4)	0.06066 (19)
S7	0.09330 (6)	0.61643 (7)	0.38385 (4)	0.05587 (17)
S8	0.21920 (5)	0.75478 (6)	0.43717 (4)	0.04944 (16)
S9	0.29160 (6)	0.54706 (6)	0.24866 (4)	0.05071 (16)
S10	0.42090 (5)	0.68105 (6)	0.29521 (4)	0.05067 (16)
S11	0.43992 (6)	0.49999 (6)	0.10086 (4)	0.05701 (18)
S12	0.59037 (6)	0.65155 (7)	0.15249 (5)	0.06202 (19)
		× /	× /	(-)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.097 (2)	0.081 (2)	0.105 (3)	-0.0512 (19)	0.042 (2)	-0.051 (2)
C2	0.0554 (14)	0.0509 (13)	0.0568 (15)	-0.0296 (12)	0.0023 (12)	-0.0155 (12)
C3	0.0663 (16)	0.0521 (14)	0.0682 (18)	-0.0355 (13)	0.0141 (13)	-0.0110 (13)
C4	0.0640 (15)	0.0417 (13)	0.0671 (17)	-0.0263 (12)	0.0062 (13)	-0.0106 (12)
C5	0.0444 (12)	0.0428 (12)	0.0471 (13)	-0.0218 (10)	-0.0045 (10)	-0.0069 (10)
C6	0.0663 (16)	0.0430 (13)	0.0565 (16)	-0.0290 (12)	0.0068 (12)	-0.0063 (11)
C7	0.0628 (15)	0.0441 (13)	0.0652 (17)	-0.0250 (12)	0.0078 (13)	-0.0163 (12)
C8	0.0563 (14)	0.0358 (11)	0.0489 (14)	-0.0186 (11)	-0.0008 (11)	-0.0040 (10)
С9	0.0487 (12)	0.0357 (11)	0.0456 (13)	-0.0168 (10)	-0.0052 (10)	-0.0059 (10)
C10	0.0519 (13)	0.0376 (11)	0.0430 (13)	-0.0217 (10)	-0.0054 (10)	-0.0017 (10)
C11	0.0511 (13)	0.0357 (11)	0.0506 (14)	-0.0172 (10)	-0.0017 (11)	-0.0034 (10)
C12	0.0507 (12)	0.0396 (11)	0.0398 (12)	-0.0202 (10)	-0.0027 (10)	-0.0083 (9)
C13	0.0537 (13)	0.0408 (11)	0.0429 (13)	-0.0234 (10)	-0.0028 (10)	-0.0102 (10)
C14	0.0464 (12)	0.0482 (13)	0.0483 (14)	-0.0248 (11)	0.0054 (10)	-0.0088 (11)
C15	0.0791 (18)	0.0409 (13)	0.081 (2)	-0.0226 (13)	0.0314 (16)	-0.0208 (13)
C16	0.108 (2)	0.079 (2)	0.0578 (19)	-0.0528 (19)	0.0120 (17)	-0.0171 (16)
C17	0.0498 (13)	0.0501 (13)	0.0482 (14)	-0.0272 (11)	0.0007 (10)	-0.0064 (11)
C18	0.0609 (18)	0.090 (2)	0.104 (3)	-0.0400 (17)	-0.0002 (17)	0.012 (2)
C19	0.091 (2)	0.121 (3)	0.145 (4)	-0.071 (2)	0.028 (2)	-0.001 (3)
C20	0.0716 (18)	0.076 (2)	0.090 (2)	-0.0347 (16)	0.0337 (17)	-0.0331 (18)
C21	0.0497 (13)	0.0392 (11)	0.0452 (13)	-0.0149 (10)	0.0014 (10)	-0.0109 (10)
C22	0.0571 (14)	0.0534 (14)	0.0618 (17)	-0.0319 (12)	0.0115 (12)	-0.0207 (12)
C23	0.0632 (15)	0.0511 (13)	0.0640 (17)	-0.0353 (12)	0.0140 (12)	-0.0270 (12)
C24	0.0464 (12)	0.0398 (11)	0.0371 (12)	-0.0201 (10)	-0.0018 (9)	-0.0096 (9)
C25	0.0566 (13)	0.0463 (12)	0.0486 (14)	-0.0304 (11)	0.0012 (11)	-0.0143 (11)
C26	0.0631 (15)	0.0442 (12)	0.0562 (16)	-0.0250 (12)	0.0028 (12)	-0.0218 (11)
C27	0.0539 (13)	0.0515 (13)	0.0463 (13)	-0.0345 (11)	0.0056 (10)	-0.0188 (11)
C28	0.0517 (13)	0.0451 (12)	0.0401 (12)	-0.0282 (11)	0.0034 (10)	-0.0136 (10)
C29	0.0483 (12)	0.0445 (12)	0.0380 (12)	-0.0263 (10)	-0.0039 (9)	-0.0079 (10)
C30	0.0511 (13)	0.0500 (13)	0.0487 (14)	-0.0316 (11)	0.0014 (10)	-0.0192 (11)
C31	0.0440 (12)	0.0385 (11)	0.0403 (12)	-0.0202 (10)	-0.0037 (9)	-0.0068 (9)
C32	0.0454 (12)	0.0389 (11)	0.0388 (12)	-0.0190 (10)	-0.0021 (9)	-0.0078 (9)
C33	0.0435 (12)	0.0371 (11)	0.0421 (13)	-0.0107 (10)	0.0009 (9)	-0.0076 (9)
C34	0.0603 (15)	0.0762 (18)	0.0533 (16)	-0.0344 (14)	0.0063 (12)	-0.0293 (14)
C35	0.0787 (19)	0.0650 (18)	0.0669 (19)	-0.0230 (16)	-0.0143 (15)	-0.0098 (15)
C36	0.0445 (12)	0.0421 (12)	0.0453 (13)	-0.0165 (10)	0.0035 (10)	-0.0095 (10)
C37	0.0676 (17)	0.0814 (19)	0.081 (2)	-0.0502 (16)	0.0237 (15)	-0.0345 (17)
C38	0.095 (2)	0.0674 (19)	0.109 (3)	-0.0432 (18)	0.013 (2)	-0.0102 (19)
N1	0.0498 (11)	0.0365 (9)	0.0453 (11)	-0.0181 (9)	-0.0031 (9)	-0.0024 (8)
N2	0.0490 (10)	0.0440 (10)	0.0418 (11)	-0.0258 (9)	0.0026 (8)	-0.0139 (8)
01	0.0771 (12)	0.0638 (11)	0.0718 (13)	-0.0420 (10)	0.0255 (10)	-0.0241 (10)
02	0.0664 (11)	0.0601 (11)	0.0746 (13)	-0.0291 (9)	0.0227 (10)	-0.0336 (10)
S1	0.0687 (4)	0.0355 (3)	0.0552 (4)	-0.0152 (3)	0.0100 (3)	-0.0049 (3)
S2	0.0700 (4)	0.0366 (3)	0.0557 (4)	-0.0186 (3)	0.0126 (3)	-0.0027 (3)

S3	0.0593 (4)	0.0405 (3)	0.0521 (4)	-0.0215 (3)	0.0061 (3)	-0.0057 (3)
S4	0.0749 (4)	0.0411 (3)	0.0591 (4)	-0.0287 (3)	0.0121 (3)	-0.0113 (3)
S5	0.0528 (4)	0.0558 (4)	0.0887 (6)	-0.0200 (3)	0.0244 (4)	-0.0157 (4)
S6	0.0604 (4)	0.0621 (4)	0.0538 (4)	-0.0315 (3)	0.0010 (3)	0.0035 (3)
S7	0.0670 (4)	0.0736 (4)	0.0572 (4)	-0.0491 (4)	0.0194 (3)	-0.0360 (3)
S8	0.0544 (3)	0.0618 (4)	0.0499 (4)	-0.0379 (3)	0.0061 (3)	-0.0210 (3)
S9	0.0609 (4)	0.0521 (3)	0.0512 (4)	-0.0329 (3)	0.0092 (3)	-0.0189 (3)
S10	0.0519 (3)	0.0606 (4)	0.0514 (4)	-0.0319 (3)	0.0066 (3)	-0.0203 (3)
S11	0.0609 (4)	0.0493 (3)	0.0573 (4)	-0.0143 (3)	0.0073 (3)	-0.0237 (3)
S12	0.0493 (3)	0.0661 (4)	0.0737 (5)	-0.0261 (3)	0.0183 (3)	-0.0237 (4)

Geometric parameters (Å, °)

1.404 (3)	C20—O2	1.416 (3)
0.9600	C20—H20A	0.9600
0.9600	C20—H20B	0.9600
0.9600	C20—H20C	0.9600
1.365 (3)	C21—O2	1.368 (3)
1.377 (4)	C21—C22	1.376 (3)
1.386 (4)	C21—C26	1.379 (3)
1.375 (4)	C22—C23	1.385 (3)
0.9300	C22—H22	0.9300
1.379 (3)	C23—C24	1.379 (3)
0.9300	C23—H23	0.9300
1.380 (3)	C24—C25	1.387 (3)
1.424 (3)	C24—N2	1.431 (3)
1.382 (4)	C25—C26	1.380 (3)
0.9300	C25—H25	0.9300
0.9300	C26—H26	0.9300
1.357 (3)	C27—C28	1.359 (3)
1.383 (3)	C27—N2	1.379 (3)
0.9300	C27—H27	0.9300
1.413 (3)	C28—C29	1.413 (3)
1.748 (2)	C28—S7	1.740 (2)
1.357 (3)	C29—C30	1.360 (3)
1.741 (2)	C29—S8	1.747 (2)
1.381 (3)	C30—N2	1.381 (3)
0.9300	С30—Н30	0.9300
1.333 (3)	C31—C32	1.338 (3)
1.766 (2)	C31—S8	1.763 (2)
1.768 (2)	C31—S7	1.769 (2)
1.759 (2)	C32—S9	1.756 (2)
1.761 (2)	C32—S10	1.759 (2)
1.341 (3)	C33—C36	1.339 (3)
1.741 (3)	C33—S11	1.751 (2)
1.767 (2)	C33—S9	1.758 (2)
1.504 (4)	C34—C35	1.498 (4)
1.816 (3)	C34—S11	1.812 (3)
0.9700	C34—H34A	0.9700
	1.404 (3) 0.9600 0.9600 1.365 (3) 1.377 (4) 1.386 (4) 1.375 (4) 0.9300 1.379 (3) 0.9300 1.380 (3) 1.424 (3) 1.382 (4) 0.9300 0.9300 1.357 (3) 1.383 (3) 0.9300 1.413 (3) 1.748 (2) 1.357 (3) 1.741 (2) 1.381 (3) 0.9300 1.333 (3) 1.766 (2) 1.768 (2) 1.768 (2) 1.759 (2) 1.761 (2) 1.341 (3) 1.741 (3) 1.741 (3) 1.767 (2) 1.504 (4) 1.816 (3) 0.9700	1.404(3) $C20O2$ 0.9600 $C20H20A$ 0.9600 $C20H20C$ $1.365(3)$ $C21O2$ $1.377(4)$ $C21C22$ $1.386(4)$ $C21C26$ $1.375(4)$ $C22C23$ 0.9300 $C22H22$ $1.379(3)$ $C23C24$ 0.9300 $C23H23$ $1.380(3)$ $C24C25$ $1.424(3)$ $C24C26$ 0.9300 $C25H25$ 0.9300 $C25H25$ 0.9300 $C25H25$ 0.9300 $C26H26$ $1.357(3)$ $C27C28$ $1.383(3)$ $C27N2$ 0.9300 $C27H27$ $1.413(3)$ $C28C29$ $1.748(2)$ $C28C29$ $1.748(2)$ $C28S7$ $1.357(3)$ $C29C30$ $1.741(2)$ $C29S8$ $1.381(3)$ $C30N2$ 0.9300 $C30H30$ $1.333(3)$ $C31C32$ $1.766(2)$ $C31S7$ $1.759(2)$ $C32S9$ $1.761(2)$ $C32S10$ $1.341(3)$ $C33S11$ $1.767(2)$ $C33S9$ $1.504(4)$ $C34C35$ $1.816(3)$ $C34S11$ 0.9700 $C34H34A$

C15—H15B	0.9700	C34—H34B	0.9700
C16—H16A	0.9600	С35—Н35А	0.9600
C16—H16B	0.9600	С35—Н35В	0.9600
C16—H16C	0.9600	С35—Н35С	0.9600
C17—S4	1.749 (3)	C36—S12	1.744 (2)
C17—S6	1.756 (2)	C36—S10	1.764 (3)
C18—C19	1.471 (4)	C37—C38	1.497 (4)
C18—S6	1.801 (3)	C37—S12	1.803 (3)
C18—H18A	0.9700	С37—Н37А	0.9700
C18—H18B	0.9700	С37—Н37В	0.9700
C19—H19A	0.9600	C38—H38A	0.9600
C19—H19B	0.9600	C38—H38B	0.9600
C19—H19C	0.9600	C38—H38C	0.9600
O1—C1—H1A	109.5	C21—C22—H22	120.2
01—C1—H1B	109.5	C23—C22—H22	120.2
H1A—C1—H1B	109.5	C24—C23—C22	121.1 (2)
01—C1—H1C	109.5	С24—С23—Н23	119.5
H1A—C1—H1C	109.5	С22—С23—Н23	119.5
H1B—C1—H1C	109.5	C23—C24—C25	118.9 (2)
O1—C2—C7	125.3 (2)	C23—C24—N2	120.9 (2)
O1—C2—C3	115.5 (2)	C25—C24—N2	120.2 (2)
C7—C2—C3	119.1 (2)	C26—C25—C24	120.0 (2)
C4—C3—C2	120.7 (2)	С26—С25—Н25	120.0
С4—С3—Н3	119.6	С24—С25—Н25	120.0
С2—С3—Н3	119.6	C21—C26—C25	120.7 (2)
C3—C4—C5	120.2 (2)	C21—C26—H26	119.6
C3—C4—H4	119.9	С25—С26—Н26	119.6
С5—С4—Н4	119.9	C28—C27—N2	107.7 (2)
C4—C5—C6	119.1 (2)	C28—C27—H27	126.2
C4—C5—N1	120.0 (2)	N2—C27—H27	126.2
C6—C5—N1	120.9 (2)	C27—C28—C29	108.0 (2)
C5—C6—C7	120.9 (2)	C27—C28—S7	134.67 (19)
С5—С6—Н6	119.6	C29—C28—S7	117.37 (18)
С7—С6—Н6	119.6	C30—C29—C28	107.7 (2)
C2—C7—C6	119.9 (2)	C30—C29—S8	135.34 (19)
С2—С7—Н7	120.0	C28—C29—S8	116.94 (18)
С6—С7—Н7	120.0	C29—C30—N2	107.7 (2)
C9—C8—N1	107.5 (2)	С29—С30—Н30	126.1
С9—С8—Н8	126.2	N2—C30—H30	126.1
N1—C8—H8	126.2	C32—C31—S8	123.12 (18)
C8—C9—C10	108.2 (2)	C32—C31—S7	120.17 (19)
C8—C9—S1	134.61 (18)	S8—C31—S7	116.59 (13)
C10—C9—S1	117.11 (18)	C31—C32—S9	122.41 (18)
C11—C10—C9	107.6 (2)	C31—C32—S10	123.97 (19)
C11—C10—S2	134.99 (18)	S9—C32—S10	113.36 (13)
C9—C10—S2	117.30 (18)	C36—C33—S11	126.19 (19)
C10—C11—N1	107.9 (2)	C36—C33—S9	117.20 (19)
C10—C11—H11	126.0	S11—C33—S9	116.18 (15)
N1—C11—H11	126.0	C35—C34—S11	112.9 (2)

C13—C12—S2	120.85 (18)	C35—C34—H34A	109.0
C13—C12—S1	122.40 (18)	S11—C34—H34A	109.0
S2—C12—S1	116.69 (13)	C35—C34—H34B	109.0
C12—C13—S4	121.99 (18)	S11—C34—H34B	109.0
C12—C13—S3	124.17 (18)	H34A—C34—H34B	107.8
S4—C13—S3	113.72 (14)	С34—С35—Н35А	109.5
C17—C14—S5	125.62 (19)	С34—С35—Н35В	109.5
C17—C14—S3	116.62 (19)	H35A—C35—H35B	109.5
S5—C14—S3	117.63 (14)	С34—С35—Н35С	109.5
C16—C15—S5	114.7 (2)	H35A—C35—H35C	109.5
С16—С15—Н15А	108.6	H35B—C35—H35C	109.5
S5—C15—H15A	108.6	C33—C36—S12	124.2 (2)
C16—C15—H15B	108.6	C33—C36—S10	116.78 (18)
S5—C15—H15B	108.6	S12-C36-S10	118.41 (15)
H15A—C15—H15B	107.6	C38—C37—S12	114.2 (2)
С15—С16—Н16А	109.5	С38—С37—Н37А	108.7
C15—C16—H16B	109.5	S12—C37—H37A	108.7
H16A—C16—H16B	109.5	С38—С37—Н37В	108.7
C15—C16—H16C	109.5	S12—C37—H37B	108.7
H16A—C16—H16C	109.5	H37A—C37—H37B	107.6
H16B—C16—H16C	109.5	С37—С38—Н38А	109.5
C14—C17—S4	117.72 (19)	C37—C38—H38B	109.5
C14—C17—S6	127.2 (2)	H38A—C38—H38B	109.5
S4—C17—S6	115.09 (14)	С37—С38—Н38С	109.5
C19—C18—S6	110.6 (3)	H38A—C38—H38C	109.5
C19—C18—H18A	109.5	H38B—C38—H38C	109.5
S6—C18—H18A	109.5	C11—N1—C8	108.78 (19)
C19—C18—H18B	109.5	C11—N1—C5	125.79 (19)
S6—C18—H18B	109.5	C8—N1—C5	125.38 (19)
H18A—C18—H18B	108.1	C27—N2—C30	108.90 (19)
С18—С19—Н19А	109.5	C27—N2—C24	124.90 (19)
C18—C19—H19B	109.5	C30—N2—C24	126.1 (2)
H19A—C19—H19B	109.5	C2—O1—C1	118.4 (2)
С18—С19—Н19С	109.5	C21—O2—C20	118.4 (2)
H19A—C19—H19C	109.5	C9—S1—C12	94.27 (11)
H19B—C19—H19C	109.5	C10—S2—C12	94.50 (11)
O2-C20-H20A	109.5	C13—S3—C14	95.12 (12)
O2—C20—H20B	109.5	C17—S4—C13	95.40 (11)
H20A—C20—H20B	109.5	C14—S5—C15	100.98 (12)
O2—C20—H20C	109.5	C17—S6—C18	102.71 (14)
H20A—C20—H20C	109.5	C28—S7—C31	94.32 (11)
H20B—C20—H20C	109.5	C29—S8—C31	94.39 (11)
O2—C21—C22	124.5 (2)	C32—S9—C33	95.30 (12)
O2—C21—C26	115.8 (2)	C32—S10—C36	95.20 (12)
C22—C21—C26	119.7 (2)	C33—S11—C34	101.04 (12)
C21—C22—C23	119.7 (2)	C36—S12—C37	101.95 (12)

Fig. 1